A range division and contraction approach for nonconvex quadratic program with quadratic constraints
نویسندگان
چکیده
This paper presents a novel range division and contraction approach for globally solving nonconvex quadratic program with quadratic constraints. By constructing new underestimating linear relaxation functions, we can transform the initial nonconvex quadratic program problem into a linear program relaxation problem. By employing a branch and bound scheme with a range contraction approach, we describe a novel global optimization algorithm for effectively solving nonconvex quadratic program with quadratic constraints. Finally, the global convergence of the proposed algorithm is proved and numerical experimental results demonstrate the effectiveness of the proposed approach.
منابع مشابه
SDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملSolving A Fractional Program with Second Order Cone Constraint
We consider a fractional program with both linear and quadratic equation in numerator and denominator having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a second order cone programming (SOCP) problem. For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...
متن کاملOn convex relaxations for quadratically constrained quadratic programming
We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative methodology based ...
متن کاملGlobal Optimality Conditions for Quadratic Optimization Problems with Binary Constraints
We consider nonconvex quadratic optimization problems with binary constraints. Our main result identifies a class of quadratic problems for which a given feasible point is global optimal. We also establish a necessary global optimality condition. These conditions are expressed in a simple way in terms of the problem’s data. We also study the relations between optimal solutions of the nonconvex ...
متن کاملA NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS
Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...
متن کامل